Empirical Assessment of Artificial Intelligence Anxiety, Associated Factors among University Employees in Nasarawa, Nigeria

Authors

  • Yakubu Ibrahim Itse Plateau State Univerity, Bokkos, Nigeria.
  • Isah Yahaya Department of Psychology, Nasarawa State University, Keffi, Nigeria.
  • Tobechi Larry Uzoigwe Department of Psychology, Nasarawa State University, Keffi, Nigeria.

Keywords:

technology adoption, workplace paranoi, deviant workplace behavior, technophobia

Abstract

While prior research has explored AIA in various countries, limited research has examined its predictors within Nigerian universities This study examines the relationship between counterproductive work behavior, persecutory ideation, and artificial intelligence anxiety (AIA) among staff at Nasarawa State University, Keffi. A cross-sectional survey was employed to gather data from a representative sample of 291 participants, comprising 59.21% aged 25-34, 51.2% male, and 47.8% female. The majority were single (57.4%), with 44.7% senior staff and 55.3% junior staff. Data were collected using a demographic questionnaire, Persecutory Ideation Questionnaire (PIQ), condensed form  of the Counterproductive Work Behaviour Checklist (CWB), and Fear of Autonomous Robots and Artificial Intelligence Scale (FARAI). The results showed significant influence of  persecutory ideation on AI anxiety (t = -2.90, p < .05), with high persecutory ideation linked to lower AI anxiety scores. Conversely, high counterproductive work behavior also predicted higher AI anxiety scores (t = 3.00, p < .05). Furthermore, a gradual increase in AI anxiety scores was observed with increasing age (F(3, 291) = 19.02; p < .05), with the youngest group reporting the lowest scores. The findings support the hypotheses that counterproductive work behavior and persecutory ideation play crucial roles in shaping individuals' anxiety towards AI. The study highlights the need to address these factors to reduce AI anxiety and promote smoother AI adoption in Nigerian universities.

References

‎[1] ‎ Sanusi, I. T., & Oyelere, S. S. (2020). Pedagogies of machine learning in k-12 context. 2020 IEEE frontiers ‎in education conference (FIE) (pp. 1–8). IEEE. DOI: 10.1109/FIE44824.2020.9274129‎

‎[2] ‎ Oyelere, S. S., Sanusi, I. T., Agbo, F. J., Oyelere, A. S., Omidiora, J. O., Adewumi, A. E., & Ogbebor, C. ‎‎(2022). Artificial intelligence in African schools: towards a contextualized approach. 2022 IEEE global ‎engineering education conference (EDUCON) (pp. 1577–1582). IEEE. DOI: ‎‎10.1109/EDUCON52537.2022.9766550‎

‎[3] ‎ Reiss, M. J. (2021). The use of AI in education: practicalities and ethical considerations. London review of ‎education, 19(1), 1–14. DOI:10.14324/LRE.19.1.05‎

‎[4] ‎ Johnson, D. G., & Verdicchio, M. (2017). AI anxiety. Journal of the association for information science and ‎technology, 68(9), 2267–2270. DOI:10.1002/asi.23867‎

‎[5] ‎ Kaya, F., Aydin, F., Schepman, A., Rodway, P., Yetişensoy, O., & Demir Kaya, M. (2024). The roles of ‎personality traits, AI anxiety, and demographic factors in attitudes toward artificial intelligence. ‎International journal of human-computer interaction, 40(2), 497–514. DOI:10.1080/10447318.2022.2151730‎

‎[6] ‎ Wang, S., Yuan, Y., Wang, X., Li, J., Qin, R., & Wang, F. Y. (2018). An overview of smart contract: ‎architecture, applications, and future trends. 2018 IEEE intelligent vehicles symposium (IV) (pp. 108–113). ‎IEEE. DOI: 10.1109/IVS.2018.8500488‎

‎[7] ‎ Li, J., & Huang, J. S. (2020). Dimensions of artificial intelligence anxiety based on the integrated fear ‎acquisition theory. Technology in society, 63, 101410. DOI:10.1016/j.techsoc.2020.101410‎

‎[8] ‎ Petropoulos, G. (2018). The impact of artificial intelligence on employment. Praise for work in the digital ‎age, 119, 121. https://www.bruegel.org/external-publication/impact-artificial-intelligence-employment

‎[9] ‎ Frey, C. B., & Osborne, M. A. (2017). The future of employment: how susceptible are jobs to ‎computerisation? Technological forecasting and social change, 114, 254–280. ‎DOI:10.1016/j.techfore.2016.08.019‎

‎[10] ‎ Dafoe, A. (2018). AI governance: a research agenda. Governance of AI program, Future Of Humanity ‎Institute, University of Oxford: Oxford, UK, 1442, 1443. https://www.fhi.ox.ac.uk/wp-‎content/uploads/GovAI-Agenda.pdf Dafoe, A. (2018). AI governance: a research agenda. Governance of ‎AI Program, Future of Humanity Institute, University of Oxford: Oxford, UK, 1442, 1443.‎

‎[11] ‎ Aruleba, K., & Jere, N. (2022). Exploring digital transforming challenges in rural areas of South Africa ‎through a systematic review of empirical studies. Scientific African, 16, e01190. ‎DOI:10.1016/j.sciaf.2022.e01190‎

‎[12] ‎ Aruleba, K., Jere, N., & Matarirano, O. (2023). An evaluation of technology adoption during remote ‎teaching and learning at tertiary institution by gender. IEEE transactions on computational social systems, ‎‎10(3), 1335–1346. DOI:10.1109/TCSS.2022.3163912‎

‎[13] ‎ Ayanwale, M. A., Sanusi, I. T., Adelana, O. P., Aruleba, K. D., & Oyelere, S. S. (2022). Teachers’ ‎readiness and intention to teach artificial intelligence in schools. Computers and education: artificial ‎intelligence, 3, 100099. DOI:10.1016/j.caeai.2022.100099‎

‎[14] ‎ Aichner, T., Grünfelder, M., Maurer, O., & Jegeni, D. (2021). Twenty-five years of social media: a ‎review of social media applications and definitions from 1994 to 2019. Cyberpsychology, behavior, and ‎social networking, 24(4), 215–222. DOI:10.1089/cyber.2020.0134‎

‎[15] ‎ Naveed, S. (2019). Impact of ambivalent supervision on employee outcomes: introducing employee state paranoia ‎as underlying mechanism. https://prr.hec.gov.pk/jspui/handle/123456789/12089?mode=simple

‎[16] ‎ Panda, G., Dash, M. K., Samadhiya, A., Kumar, A., & Mulat-weldemeskel, E. (2023). Artificial ‎intelligence as an enabler for achieving human resource resiliency: past literature, present debate and ‎future research directions. International journal of industrial engineering and operations management, ‎‎(ahead-of-print). DOI:10.1108/ijieom-05-2023-0047‎

‎[17] ‎ Raj, M., Singh, S., Solanki, K., & Selvanambi, R. (2022). An application to detect cyberbullying using ‎machine learning and deep learning techniques. SN computer science, 3(5), 401. DOI:10.1007/s42979-022-‎‎01308-5‎

‎[18] ‎ Freeman, D., Garety, P. A., & Phillips, M. L. (2000). An examination of hypervigilance for external ‎threat in individuals with generalized anxiety disorder and individuals with persecutory delusions ‎using visual scan paths. The quarterly journal of experimental psychology section a, 53(2), 549–567.‎

‎[19] ‎ Freeman, D., Gittins, M., Pugh, K., Antley, A., Slater, M., & Dunn, G. (2008). What makes one person ‎paranoid and another person anxious? The differential prediction of social anxiety and persecutory ‎ideation in an experimental situation. Psychological medicine, 38(8), 1121–1132. ‎DOI:10.1017/S0033291708003589‎

‎[20] ‎ Bajpai, A. R., & Bajpai, D. A. (2023). A study on the impact of artificial intelligence on traditional ‎grocery stores. Emerging trends and innovations in industries of the developing world: a multidisciplinary ‎approach, 10(2), 14–18. DOI:10.1201/9781003457602-3‎

‎[21] ‎ Kenku, A. A., & Uzoigwe, T. L. (2024). Determinants of artificial intelligence anxiety: impact of some ‎psychological and organisational characteristics among staff of Federal Polytechnic Nasarawa, ‎Nigeria. African journal for the psychological studies of social issues, 27(1). ‎https://ajpssi.org/index.php/ajpssi/article/view/616‎

‎[22] ‎ Spector, P. E., & Fox, S. (2002). An emotion-centered model of voluntary work behavior. Some ‎parallels between counterproductive work behavior and organizational citizenship behavior. Human ‎resource management review, 12(2), 269–292. DOI:10.1016/S1053-4822(02)00049-9‎

‎[23] ‎ Sackett, P. R., & DeVore, C. J. (2002). Counterproductive behaviors at work. In Handbook of industrial, ‎work and organizational psychology (pp. 145–164). Sage Publications Ltd. ‎https://psycnet.apa.org/record/2003-00437-008‎

‎[24] ‎ Robinson, S. L., & Bennett, R. J. (1995). A typology of deviant workplace behaviors: a ‎multidimensional scaling study. Academy of management journal, 38(2), 555–572.‎

‎[25] ‎ Gruys, M. L., & Sackett, P. R. (2003). Investigating the dimensionality of counterproductive work ‎behavior. International journal of selection and assessment, 11(1), 30–42. DOI:10.1111/1468-2389.00224‎

‎[26] ‎ Spector, P. E., Fox, S., Penney, L. M., Bruursema, K., Goh, A., & Kessler, S. (2006). The dimensionality of ‎counterproductivity: are all counterproductive behaviors created equal? Journal of vocational behavior, ‎‎68(3), 446–460. DOI:10.1016/j.jvb.2005.10.005‎

‎[27] ‎ Tversky, A., & Kahneman, D. (2000). Loss aversion in riskless choice: a reference-dependent model. In ‎Choices, values, and frames (pp. 143–158). DOI:10.1017/CBO9780511803475.008‎

‎[28] ‎ Taşgit, Y. E., Baykal, Y., Aydin, U. C., Yakupoğlu, A., & Coşkuner, M. (2023). Do employees’ artificial ‎intelligence attitudes affect individual business performance? Journal of organisational studies and ‎innovation, 10(2), 19–37.‎

‎[29] ‎ World Health Organization. (2018). International classification of diseases for mortality and morbidity ‎statistics (11th Revision). https://icd.who.int/browse11/l-m/en

‎[30] ‎ Bentall, R. P., Corcoran, R., Howard, R., Blackwood, N., & Kinderman, P. (2001). Persecutory delusions: ‎a review and theoretical integration. Clinical psychology review, 21(8), 1143–1192. DOI:10.1016/S0272-‎‎7358(01)00106-4‎

‎[31] ‎ Freeman, D. (2016). Persecutory delusions: a cognitive perspective on understanding and treatment. ‎The lancet psychiatry, 3(7), 685–692. DOI:10.1016/S2215-0366(16)00066-3‎

‎[32] ‎ Freeman, D., & Garety, P. (2014). Advances in understanding and treating persecutory delusions: a ‎review. Social psychiatry and psychiatric epidemiology, 49(8), 1179–1189. DOI:10.1007/s00127-014-0928-7‎

‎[33] ‎ Greenburgh, A., & Raihani, N. J. (2022). Paranoia and conspiracy thinking. Current opinion in psychology, ‎‎47, 101362. DOI:10.1016/j.copsyc.2022.101362‎

‎[34] ‎ Zou, W., & Liu, Z. (2024). Unraveling public conspiracy theories toward ChatGPT in China: a critical ‎discourse analysis of Weibo posts. Journal of broadcasting and electronic media, 68(1), 1–20. ‎DOI:10.1080/08838151.2023.2275603‎

‎[35] ‎ Milosevic, T., Van Royen, K., & Davis, B. (2022). Artificial intelligence to address cyberbullying, ‎harassment and abuse: new directions in the midst of complexity. International journal of bullying ‎prevention, 4(1), 1–5. DOI:10.1007/s42380-022-00117-x

‎[36] ‎ Zhu, D. H., & Deng, Z. Z. (2021). Effect of social anxiety on the adoption of robotic training partner. ‎Cyberpsychology, behavior, and social networking, 24(5), 343–348. DOI:10.1089/cyber.2020.0179‎

‎[37] ‎ McKay, R., Langdon, R., & Coltheart, M. (2006). The persecutory ideation questionnaire. Journal of ‎nervous and mental disease, 194(8), 628–631. DOI:10.1097/01.nmd.0000231441.48007.a5‎

‎[38] ‎ Oghenekevwe, A. G. (2017). The influence of fear of charms on assertiveness and persecutory ideations. ‎https://oa.mg/work/3017263733‎

‎[39] ‎ Tobechi, U., & Monday, A. (2024). Predictors of persecutory ideation: impact of hell anxiety and ‎demonic struggle among 100 level accounting students of Nasarawa State University Keffi. Pancasila ‎international journal of applied social science, 2(02), 157–173. DOI:10.59653/pancasila.v2i02.576‎

‎[40] ‎ Liang, Y., & Lee, S. A. (2017). Fear of autonomous robots and artificial intelligence: evidence from ‎national representative data with probability sampling. International journal of social robotics, 9(3), 379–‎‎384. DOI:10.1007/s12369-017-0401-3‎

‎[41] ‎ Woodruff, K., Hutson, J., & Arnone, K. (2023). Perceptions and barriers to adopting artificial intelligence in K-‎‎12 education: a survey of educators in fifty states. Faculty Scholarship.‎

Published

2024-09-01

Issue

Section

Articles

How to Cite

Empirical Assessment of Artificial Intelligence Anxiety, Associated Factors among University Employees in Nasarawa, Nigeria. (2024). Psychology Nexus, 1(1), 37-47. https://autoconfig.nex.reapress.com/journal/article/view/18

Most read articles by the same author(s)